
Bioorganic & Medicinal Chemistry Letters 19 (2009) 3795–3797
Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier .com/ locate/bmcl
Catalytic asymmetric synthesis of cyclic a-alkyl-amino acid derivatives
having a tetrasubstituted a-carbon

Yong-Gang Wang, Haruka Mii, Taichi Kano, Keiji Maruoka *

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 March 2009
Revised 8 April 2009
Accepted 9 April 2009
Available online 14 April 2009

Keywords:
Asymmetric synthesis
Amino acid
Phase-transfer
Alkylation
Cyclic
N
H

R

CO2H

n

Figure 1. Cyclic a-alkyl-a-amin
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Catalytic asymmetric synthesis of various cyclic a-alkyl-amino acid derivatives having a tetrasubstituted
a-carbon has been accomplished by the utilization of phase-transfer alkylation of a-alkyl-amino acid
derivatives.
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a,a-Dialkyl-a-amino acids are conformationally constrained
and they play an important role in designing a novel peptide.1

Among them, cyclic a-alkyl-a-amino acids with the amine group
inside the cyclic system such as a-methyl proline are applied not
only to peptide chemistry but also to organocatalytic reactions as
catalyst,2 and development of their synthetic method has become
a research area of great importance in medicinal and synthetic
chemistry (Fig. 1). While a number of asymmetric syntheses of
such cyclic amino acids via construction of tetrasubstituted a-car-
bon have been reported to date,3–9 general methods for their
preparation based on the catalytic asymmetric construction of tet-
ra-substituted carbon are scarce.7–9 In this context, we have been
interested in utilization of enantioselective phase-transfer alkyl-
ation of a-amino acid derivatives to prepare cyclic a-alkyl-a-ami-
no acids.8,9 Here we wish to report the efficient asymmetric
synthesis of a-alkylproline, a-alkylpipecolic acid and a-alkylaziri-
dine-2-carboxylic acid derivatives based on the enantioselective
phase-transfer alkylation.

We first examined the synthesis of a-alkylproline t-butyl esters
by C,N-double alkylation of C-alkyl-substituted-N-(4-chloroben-
o acid.
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. Maruoka).
zylidene)glycine esters 2 using 1-chloro-3-iodopropane as an
alkylating agent. The reaction of 2 (R = Me) with 1-chloro-3-iodo-
propane (2 equiv) in toluene in the presence of a chiral phase
transfer catalyst (S)-110 (1 mol %) and CsOH�H2O (5 equiv) at 0 �C
proceeded smoothly to afford the corresponding a-alkylated ala-
nine derivative. Acidic hydrolysis with 1 N HCl and subsequent
ring closure with an excess amount of Na2CO3 gave a-methylpro-
line t-butyl ester 3 (R = Me) in 87% yield. The enantiomeric excess
of 3 (R = Me) was determined to be 99% ee by chiral HPLC analysis
of its N-benzoyl adduct (Table 1, entry 1). Other a-amino acid
derivatives 2 (R = i-Bu, allyl, and Bn) were also applicable to this
reaction sequence, and the corresponding a-alkylproline t-butyl
esters 3 (R = i-Bu, allyl, and Bn) were obtained in good yield with
excellent enantioselectivity (entries 2–4). The catalyst loading
could be reduced without significant loss of enantioselectivity,
and moderate to good yields of 3 (R = Bn) were obtained with
prolonged reaction time (entries 5 and 6).
N
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Ar
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(Ar = 3,4,5-F3C6H2)

In a similar manner, using 1,3-dichloro-2-methylenepropane

instead of 1-chloro-3-iodopropane, a variety of a-alkyl-4-methyle-
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Table 1
Asymmetric synthesis of a-alkylproline t-butyl esters 3a

N

R

CO2Bu tAr

Ar = 4-Cl-C6H4

N
H

R

CO2But

(S)-1 (1 mol%)
CsOH·H2O

1) 1N HCl
2) Na2CO3

toluene, 0 °C

I Cl
+

2
3

Entry R Time (h) Yieldb (%) eec (%) (config)

1d Me 6 87 99e (R)
2 i-Bu 12 94 99e

3 Allyl 8 76 98e

4 Bn 6 91 99
5f Bn 24 81 99
6g Bn 40 75 98

a The reaction of 2 (1 equiv) with 1-chloro-3-iodopropane (3 equiv) was carried
out in toluene in the presence of catalyst (S)-1 (0.01 equiv) and CsOH�H2O (5 equiv)
at 0 �C.

b Isolated yield.
c Determined by HPLC analysis using chiral column (Chiralpak AD-H or Chiralcel

OD-H, Daicel Chemical Industries, Ltd).
d 2 equiv of 1-chloro-3-iodopropane was used.
e ee of the corresponding N-benzoyl adduct.
f 0.5 mol % of (S)-1.
g 0.1 mol % of (S)-1.

Table 2
Asymmetric synthesis of a-alkyl-4-methyleneproline t-butyl esters 4a

N

R

CO2ButAr

Ar = 4-Cl-C6H4

N
H

R

CO2But

(S)-1 (1 mol%)
CsOH·H2O

1) 1N HCl
2) Na2CO3

toluene, 0 °C

ClCl

+

2
4

Entry R Time (h) Yieldb (%) eec (%)

1 Me 2 44 97d

2 i-Bu 1 48 96d

3 Allyl 0.7 64 96d

4 Bn 0.75 56 97

a The reaction of 2 (1 equiv) with 1,3-dichloro-2-methylenepropane (2 equiv)
was carried out in toluene in the presence of catalyst (S)-1 (0.01 equiv) and
CsOH�H2O (5 equiv) at 0 �C.

b Isolated yield.
c Determined by HPLC analysis using chiral column (Chiralpak AD-H or Chiralcel

OD-H, Daicel Chemical Industries, Ltd).
d ee of the corresponding N-benzoyl adduct.

Table 3
Asymmetric synthesis of a-alkyl-pipecolic acid t-butyl esters 5a

N

R

CO2ButAr

Ar = 4-Cl-C6H4

(S)-1 (1 mol%)
CsOH·H2O

1) 1N HCl
2) Na2CO3

toluene, 0 °C

Cl

+

I

N
H

R
CO2But3) TBAI, NaI

K2CO3, MeCN
2

5

Entry R Time (h) Yieldb (%) eec (%)

1 Me 12 83 99d

2 Allyl 8 81 98d

3 Bn 8 84 99

a The reaction of 2 (1 equiv) with 1-chloro-4-iodobutane (3 equiv) was carried
out in toluene in the presence of catalyst (S)-1 (0.01 equiv) and CsOH�H2O (5 equiv)
at 0 �C.

b Isolated yield.
c Determined by HPLC analysis using chiral column (Chiralpak AS-H or Chiralcel

OD-H, Daicel Chemical Industries, Ltd).
d ee of the corresponding N-benzoyl adduct.

Table 4
Asymmetric synthesis of a-alkylaziridine-2-carboxylic acid t-butyl esters 6a

N

R

CO2ButAr

Ar = 4-Cl-C6H4

(S)-1 (1 mol%)
CsOH·H2O (5 eq)

1) 1N HCl
2) Na2CO3

N
H

R

CO2But
toluene, 0 °C

CH2I2

+

2
6

Entry R Time (h) Yieldb (%) eec (%)

1 i-Bu 6 89 97d

2 Bn 6 91 83d

3e Bn 12 87 98

a The reaction of 2 (1 equiv) with diiodomethane (3 equiv) was carried out in
toluene in the presence of catalyst (S)-1 (0.01 equiv) and CsOH�H2O (5 equiv) at
0 �C.

b Isolated yield.
c Determined by HPLC analysis using chiral column (Chiralcel OJ-H, Daicel

Chemical Industries, Ltd).
d ee of the corresponding N-benzoyl adduct.
e The reaction was performed at �20 �C.

N CO2ButAr

Ar = 4-Cl-C6H4

(S)-1 (1 mol%)
CsOH·H2O

(5 eq)

72%, 98% ee

N
H CO2But

Cl(CH2)3I
(2 eq)

0 °C, 10 htoluene
–10 °C, 3 h

one-pot

1) 1N HCl
2) Na2CO3

Br

+

(1 eq)

7

Scheme 1.
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neproline t-butyl esters 4 could be synthesized in moderate yield
with excellent enantioselectivity (Table 2).

Based on the above results, we then examined the catalytic
asymmetric synthesis of a-alkylpipecolic acid t-butyl esters using
1-chloro-4-iodobutane. Under similar conditions the ring-closing
N-alkylation did not proceed. When the cyclization was performed
in the presence of TBAI (0.1 equiv), NaI (5.0 equiv) and K2CO3

(2.0 equiv) in MeCN under reflux overnight, the desired a-alkyl-
pipecolic acid t-butyl esters 5 were obtained in good yield with
excellent enantioselectivity (Table 3).11

While the attempted synthesis of a-alkylazetidine-2-carboxylic
acid derivative using 1,2-diiodoethane as an alkylating agent failed,
probably due to the decomposition of 1,2-diiodoethane under basic
alkylation conditions, a-alkylaziridine-2-carboxylic acid deriva-
tives 6 were effectively prepared using diiodomethane (Table 4).

To enhance the utility of this methodology we further examined
the synthesis of an a-alkylproline derivative through the one-pot
double alkylation of N-(4-chlorobenzylidene)glycine ester 7.12

Using a-unsubstituted glycine derivative 7, sequential alkylations
were performed with allyl bromide (1.0 equiv) and 1-chloro-3-
iodopropane (2.0 equiv) in one-pot, and the cyclization of the
resulting a,a-dialkylated product gave the a-allylproline t-butyl
ester in 72% yield with 98% ee (Scheme 1).

In summary, we have demonstrated an efficient asymmetric
synthesis of a-alkylproline, a-alkylpipecolic acid and a-alkylaziri-
dine-2-carboxylic acid derivatives by the highly enantioselective
phase-transfer alkylation. Further investigations for utilizing these
amino acid derivatives as attractive chiral building blocks are in
progress in our laboratory.
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